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Introduction 
 

Infants live in a visually cluttered world, and prioritizing attention to meaningful 

information is arguably the most important challenge they face to efficiently learn about 

their surroundings. To do so, infants must coordinate multiple attention processes across 

different timescales.  

Coordination is the organization of different parts of a complex system that 

enable them to effectively work together. Coordination is essential to cognition but has 

been relatively understudied (Van Orden, et al., 2011). Research on attention is no 

exception. On the one hand, there is a large body of work documenting the 

developmental timelines of different attention processes (Amso & Scerif, 2015), and rich 

theories about how brain development supports their coordination. However, there is a 

notable lack of research quantifying how these processes become coordinated, as well as 

a lack of studies that combine both brain imaging data and direct measures of attention. 

Thus, while we have a clear picture of the developmental timeline of each sub-component 

of attention, little is known about (a) how these processes become coordinated and (b) 

how neural development supports their coordination. The primary aim of my dissertation 

is to expand upon my past work quantifying the processes that make it possible for 

infants to pay attention in a coordinated way, and to examine how brain development 

supports these processes. 

This dissertation is a two-part study. In Study 1 I replicate and extend my past 

work showing age-related increases in eye-gaze fractality in infants by examining 
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spectrum width (e.g., variability in α). In Study 2 I present preliminary data on the 

development of functional brain networks, and a detailed analytic plan of brain-behavior 

analyses that I will do once the MRI data are finished being processing and cleaned. The 

team will finish processing the MRI data in the next 1-2 months.  

 

Study 1 
 

Background 
 
The Development of Visual Attention. 

Infants live in a visually noisy world, and prioritizing attention to meaningful information 

is arguably the most important task that they face to efficiently learn about their 

surroundings (Markant & Amso, 2013). Hierarchical models of attention frame attention 

as the product of competition  (Desimone & Duncan, 1995) or interactions between 

bottom-up orienting (or, exogenously driven responses to physical features of stimuli) 

and top-down orienting (or, endogenously driven, goal-directed attention) (Error! Not a 

valid bookmark self-reference.).  

Broadly speaking, these models posit that infants’ looking behavior can be 

understood as an emergent phenomenon that unfolds across development as lower-level 

attention systems driven by bottom-up stimulus properties catalyze the development of 

top-down attention processes. As top-down mechanisms develop, they then tune the 

bottom-up systems, creating a self-organizing feedback loop. This component of the 

model has been important for understanding early visual social engagement (Klin, 

Shultz, & Jones, 2015). Evidence suggests that in addition to specialized cortical regions 
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for processing social information such as faces, there also exists sub-cortical routes for 

social information processing (Johnson, 2005; Lorenzi, Mayer, Rosa-Salva, & 

Vallortigara, 2017). Thus, early attentional biases for social stimuli may reflect more 

“reflexive” attention pathways and experience-expectant development, whereas later-

emerging preferences for social stimuli reflect more volitional pathways shaped by 

experience-dependent development. Indeed, human newborns reflexively orient to social 

stimuli from birth (Bardi, Regolin, & Simion, 2014; Farroni, Csibra, Simion, & Johnson, 

2002; Valenza, Simion, Cassia, & Umiltà, 1996), suggesting that these early attentional 

biases may be subcortically mediated. These biases could provide infants with the early 

visual experiences with the social world, which in turn tune cortical processing of social 

information. Both mechanisms serve to amplify social information in the first years of 

life.  

From this perspective, early looking behavior is a dynamic phenomenon that 

emerges through self-organizational processes across multiple systems and timescales. 

Researchers have long recognized the importance of examining the temporal processes of 

visual attention development, as it can reveal new information about the relationship 

between global average looking times and the processes that give rise to them (e.g., 

Aslin, 2007). Despite this qualitative observation, little work has been done to quantify 

the dynamic organization of infants’ gaze. 



 4 

  

 

Complexity science: A systems-level approach to studying visual attention.  

My past work applied methods from Complexity science to quantify the dynamic, self-

organizational properties in infants’ eye-gaze patterns (Stallworthy et al., 2020). 

Complexity science is an interdisciplinary field that sits at the intersection of 

mathematics, computer science, and natural science, and examines complex systems, or 

systems with many interacting components (Downey, 2012). It encompasses a collection 

of theories and methods, and there is significant overlap between its core principles and 

dynamic systems theory (e.g., control parameters, critical states, self-organization, etc.) 

(Van Orden, Kloos, & Wallot, 2011). It places a strong emphasis on the idea that living 

and open systems have dynamics that reflect flexible adaptation to their environment, and 

that behavior is soft-assembled from constraints placed on degrees of freedom by the 

brain, body, and environment. Thus, task performance can be thought of as a match 

between an organism’s internal constraints and their environment (similar to the 

arguments laid out by Gibson & Pick, 2000), as well as their ability to flexibly adapt to 
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Figure 1. Schmetic of heirarchical models of attention.  



 5 
changing constraints. Infants’ looking behavior, for example, can be thought of as being 

self-organized through the control parameters put in place by oculomotor and brain 

maturation, the information present in the environment, as well as attractor states which 

themselves are shaped by the infant’s past experiences and her developmental stage. 

From this perspective, attention development represents changes in an infant’s ability to 

flexibly adapt and change orienting strategies, or to change her loci of attention when 

faced with new information.  

While these concepts echo principles of self-organization and emergent behavior that 

have been around for some time, complexity science offers ways to quantify these system 

dynamics. While multiple methods have been used (e.g. Recurrence Quantification 

Analysis, ARFIMA models), my dissertation employs Detrended Fluctuation Analysis 

(DFA) and Multifractal Detrended Fluctuation Analysis (MF-DFA) to measure eye-gaze 

fractality in infants.  

 

Fractality.  

Fractals refer to nested patterns of variability that are self-similar across different 

timescales (Coey, Wallot, Richardson, & Van Orden, 2012a). This self-similarity refers 

to the idea that the same mathematically-driven pattern can be recursively called at any 

magnitude to generate a structure comprised of many nested, scale-invariant patterns. 

Through simple local rules, larger and more complex patterns can emerge. 

Mathematically, fractality is the relationship between power (or the amplitude of 

change) and frequency (how often changes of that amplitude occur) of variation in a time 
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series (Van Orden et al., 2011). This relationship can be described by the negative slope 

(S) of the relationship between power (P(f)) and frequency (f) on a log-log scale, with the 

equation S=P(f)/f (Figure 2). This relationship indicating an inversely proportional 

relationship between power and frequency can also be described through power-law 

scaling, or the equation P=1/f α. Both the negative slope and α provide a metric of scale-

invariance. When the slope between power and frequency is -1 (α=1), P(f) and f are 

proportional, implying scale-invariance, and self-similarity over nested time scale. This is 

referred to as pink noise (or 1/f scaling), and is suggestive of a highly-organized system, 

that is still flexible to change. It is ubiquitous in nature, (e.g., in mountain ranges and 

riverbeds; Mandelbrot, 1982) and human physiology (e.g., BOLD signal at rest; Wink, 

Bullmore, Barnes, Bernard, & Suckling, 2008), and may reflect healthy cognitive and 

psychobiological systems (Gilden, 2001; Van Orden, Holden, & Turvey, 2003). 

     

Figure 2. Example of time series with White Noise, Pink Noise, and Brown Noise (left), and their 

corresponding log(power) vs. log(frequency) plot (right).  
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Multifractal Systems. Importantly, there are multiple types of interactivity (Ihlen & 

Vereijken, 2010). The fractal properties described above reflect a type of interactivity 

called self-organized criticality (SOC; Bak & Chen, 1991) which refers to a system in 

which many local interactions between sub-components result in emergent global 

properties (Kelty-Stephen, Palatinus, Saltzman, & Dixon, 2013). For example, schools of 

fish (Bonabeau & Dagorn, 1995) and ant foraging (Halley & Burd, 2004) are systems that 

exhibit SOC; the resulting global patterns exhibit fractal properties, but these patterns 

emerge from local interactions rather than cross-scale interactions. This form of 

interactivity maps onto theoretical models of visual attention that posit that eye-gaze can 

be predicted based solely on the physical stimulus saliency (e.g., Itti, Koch & Niebur, 

1998). However, hierarchical theories of attention development posit that as bottom-up 

and top-down processes become more intertwined, interactions do occur between 

multiple timescales. This multi-scale interactivity occurs when large-scale factors act as 

contextual constraints upon smaller scale events, and when small-scale factors perturb 

large-scale factors. A large-scale contextual factor, for example, could be an infants’ 

experience with her mother which make it more likely that she attends to her mother’s 

face relative to a stranger’s face with the same low-level stimulus properties. On the other 

hand, the infant’s arousal state – occurring on a smaller timescale – can influence how 

big of an effect her familiarity with her mother has on the likelihood of her attending to 

her face  

Importantly, both types of interactivity (SOC and multi-scale interactivity) will 

yield global patterns that can be characterized by a single power-law. This means that 
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evidence of a single power-law function does not yield information regarding the kind of 

interactivity present; it is consistent with interactivity, but not sufficient evidence for one 

type or the other (Kelty-Stephen et al., 2013). 

One way to determine if a time series exhibits multi-scale interactions is to 

examine whether power-law scaling changes over time; if it does, then it is said to be 

multifractal. The multifractal spectrum width describes how many fractal structures are 

needed to describe the time series. If α describes the average relationship between power 

and frequency (as described in the Fractality section), then MF spectrum width describes 

the variance in this structure. More conceptually, the MF spectrum width is thought to 

measure the presence of interacting processes across multiple time scales (e.g. rule-

switching behaviors that require the balancing of long-term goals and short-term 

feedback; Kelty-Stephen, Stirling, & Lipsitz, 2016).  

 

Fractal Dynamics of Attention.  

With the exception of my own work, most evidence of fractal dynamics in eye-gaze 

comes from studies on adults.  Importantly, variation in eye-gaze data collected from a 

fake eye has been shown to yield white noise (Coey, Wallot, Richardson, & Van Orden, 

2012b), suggesting that the eye-tracker itself does not produce scale-invariant dynamics. 

Relative to the fake eye, data collected from humans fixating on static stimuli do show 1/f 

scaling (Coey et al., 2012b). Adults’ eye-gaze data is also fractally organized during 

visual search tasks, whether searching for the same target repeatedly (Aks, Zelinsky, & 

Sprott, 2002), or searching for a target based on a verbal instruction (Stephen, Mirman, 
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Magnuson, & Dixon, 2009). Because adult eye-gaze data is fractal even during free-

viewing (Marlow et al., 2015) and when fixating on static images (Coey et al., 2012b), 

any argument linking fractal structure to organized cognitive processes must be supported 

by data connecting α indices to task performance or task constraints. For example, one 

study looked at the relationship between pink-noise and task performance in a visual 

search task, and found that α was correlated with task performance on a trial-by-trial 

basis (Stephen & Anastas, 2011). These findings have been interpreted as suggesting that 

ocular fluctuations at relatively small time scales have implications for task performance 

at larger scales, and may support the efficiency of the cognitive system. The authors also 

suggest that if visual search performance is predicted by pink noise, then performance is 

as deeply rooted in lower-order oculomotor variability as it is in cognitive and neural 

structures.  

The one study that examined 1/f scaling in children reported that children (mean 

age=24 months) showed higher α when watching blocks (α=1.28 +/- 17) than when 

watching faces (α=1.19 (+/- 17) (Wang et al., 2014). That same study found the opposite 

finding in adults, such that their α was higher when viewing faces than blocks. 

Importantly, they found similar variability in α for adults and children, suggesting that α 

is not a person-level stable trait, but instead is a property reflecting interactions between 

an individual and her environment.  

There is also a small body of work that has measured the variance in the fractal 

structures of eye-gaze data to look for evidence of cross-scale interactions, either by 

measuring spectrum width or examining distributions of eye-gaze data. Adults’ eye-gaze 



 10 
data showed significant variance in α (e.g., a non-zero spectrum width) during a 

challenging visual search task where trials lasted up to five minutes (Amor, Reis, 

Campos, Herrmann, & Andrade, 2016). Spectrum width of eye-gaze data can also be 

manipulated by task constraints. One study that used data from saccade tasks found that 

the spectrum width of adults’ eye-gaze data was reduced in the task that required decision 

making relative to the simpler saccade task, suggesting that increasing cognitive load can 

diminish cross-scale interactivity (Stan et al., 2014). Another study inferred system 

dynamics from the probability distribution functions (PDF) of eye-gaze data (as opposed 

to time series), using a method that places a system on a continuum from component-

dominant (normal PDF) to interaction-dominant (power law PDF) (Stephen & Mirman, 

2010). Between these ends of the continuum are lognormal PDFs which arise from 

interaction-dominant systems under task constraints. Overall, most participant’s PDFs 

showed the best statistical fit with a lognormal distribution. However, in the task that was 

designed to be more challenging and place weaker constraints on the system (e.g., elicit 

more variable behavior), the PDFs were closer to a power-law distribution. These 

findings are consistent with the idea that when there are fewer task constraints, systems 

appear to be more interaction-dominant.   

 

The present study 
 

In the present study, there is variability in the external task constraints that the 

infants face, as well as internal developmental constraints that have the potential to 
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impact their attention system dynamics. In Study 1, I model how these factors impact 

measures of interactivity in time series of infants eye-gaze data. 

My past work validated the use of Detrended Fractal Analyses (DFA) to examine 

scale-invariance in infants’ eye-gaze (Stallworthy et al., 2020). In that study, we used 

longitudinal eye-tracking data from 166 infants (333 visits) from 3- to 36-months as they 

watched movies of women dancing, pixelated versions of those movies with diminished 

social content, and attention cues. We found that gaze patterns of even the youngest 

infants exhibited fractal organization, and that fractality increased with age. Fractal 

organization was also higher when infants viewed social stimuli, suggesting that in 

addition to the stable increases in α over developmental time, infants’ gaze patterns are 

more self-organized when watching movies with richer social content. Importantly, there 

was also significant within-person changes in fractal organization, such that infants were 

more self-organized during times when they showed increased spontaneous attention to 

faces.  

The present study seeks to replicate those findings with a larger sample by 

including visits collected since January 2018. Additionally, this study builds upon that 

work by meeting two aims. The first aim seeks to determine the minimum amount of 

data needed for DFA. My past work adhered to the standing recommendation for 

biomedical time series, and included time series with a minimum of 1,000 contiguous 

data points (Ihlen, 2012); however, it is an open question as to whether the same 

minimum data criteria should be applied to all kinds of data. Using sensitivity analyses 
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on real and simulated eye-tracking time series, I will determine the minimum number of 

data points required for stable estimates of α.  

The second aim seeks to examine developmental changes in cross-scale 

interactivity, as measured by the multi-fractal (MF) spectrum width. Given that 

hierarchical models of attention (Error! Not a valid bookmark self-reference.) emphasize 

interactions between bottom-up and top-down attentional processes which are known to 

occur on different time scales (Amso & Scerif, 2015), developmental changes in MF 

width may be a better index of increased interactivity between these system components. 

Using multi-fractal detrended fluctuation analysis (MFDFA) I will determine whether 

these time series are multifractal, and if so, how MF spectrum width changes over time.  

 

Methods 
 
Research design  
 
Participants. All participants were recruited from the Institute of Child Development’s 

participant registry at the University of Minnesota as a part of a larger mixed cross-

sectional and longitudinal study.  Two primary cohorts were included. The first cohort 

was part of a larger mixed cross-sectional and longitudinal study of brain and behavioral 

development. The second cohort was part of a cross-sectional study on behavioral 

development only. Participant exclusion criteria for Cohort 1 included: (1) history of 

known genetic syndromes associated with ASD risk; (2) significant medical conditions 

affecting growth, cognitive development, or significant vision or hearing impairment; (3) 

birth weight < 2000 g and/or gestational age < 36 weeks; (4) history of significant 
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perinatal adversity, or exposure in-utero to neurotoxins; (5) having been adopted; and (6) 

family history of a first-degree relative with intellectual disability, autism, psychosis, 

schizophrenia, or bipolar disorder; (7) contraindication for magnetic resonance imaging. 

Criteria for Cohort 2 were identical, with the exception of (7). Parents provided written 

and informed consent for their child’s participation in the study. All protocols are in 

accordance with relevant guidelines and regulations and were approved by the University 

of Minnesota’s Institutional Review Board (IRB).  

As part of a planned missingness design, children contributed between 1 and 6 

waves of data during visits to the lab. More information on the samples used in Aims 1 

and 2 can be found in those sections.  

 

Procedures. At each visit, infants were seated in their parent’s lap approximately 65 cm 

from a 27-inch 1920 × 1080 resolution ASUS monitor that subtended 43.6 degrees of 

visual angle with an aspect ratio of 16:9. Infants’ eye movements were recorded with 

non-invasive corneal-reflection binocular eye-tracking equipment (Tobii TX300, 

recordings sampled at 300 Hz; Tobii Studio; Tobii Technology, Danderyd, Sweden). 

They watched four 20-second movies of women dancing to lively music while waving 

toys, as well as pixelated versions of these same videos. These two stimulus conditions 

(Social and Pixelated; Figure 3) were used to compare the fractal structure of gaze 

patterns while viewing social stimuli, relative to stimuli with most of the social 

information degraded. Movies were interleaved with dynamic audio-visual attention cues 

used for estimating recording accuracy and precision, and for establishing baseline levels 
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of infants’ gaze organization. There were 4 different Social movies, each with a Pixelated 

counterpart, for a total of 8 movies interspersed with audio-visual attention cues, as 

shown in Figure 3. The entire eye-tracking task lasted approximately 5 minutes.  

 

Figure 3. Example of the sequence of stimuli presented at each visit.  

Socially salient movies featured women moving with toys. Pixelated versions of these movies were inter-

leaved with the socially salient movies. Movies were interleaved with dynamic audio-visual attention cues 

 

Data Cleaning & Processing 
 
Time-Series Generation. After the eye-tracking data were collected, we created gaze-

based time-series using the amplitude of change in infants’ raw gaze position, sampled 

every 3.33 ms, over time (as shown in Figure 4). As implemented, DFA does not allow 

for missing data points. As in our previous work, to maximize the number of usable time-

series, eye-tracking data from each movie were divided into approximately 6-second 

segments for analysis. Of the 4 movies, 3 were divided into 3 segments (mean= 

7.38/SD=2.15 sec long), and 1 movie was divided into 4 segments (mean=6.47/SD=1.58 

sec long) based on events in the movies. All Social movies and their Pixelated 

counterparts were segmented for analysis, as was each audio-visual attention cue. 
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Blinks were identified using a noise-based algorithm (Hershman, Henik, & Cohen, 2018). 

All data missing as a result of blinks (less than 200 ms) were linearly interpolated. The 

longest contiguous stream of eye-tracking data for each movie segment was used to 

generate the final time series used for DFA. As in our previous work, we used the 

amplitude of change in gaze position over time as our time-series in order to account for 

changes on both the X and Y axes, to avoid excessive computation and difficulties 

interpreting our outcome for fractal organization along just one axis. 

 

Figure 4. Example of a time-series comprised of the amplitude of X- and Y-coordinate gaze change. 

Amplitude is calculated as the change in Euclidian distance between two samples D = sqrt((X2- − X1)2 + 

(Y2 − Y1)2 , relative to the change in time between samples, T = t2 − t1 for the entire data stream, D/T ) over 

time (1/300th of a second from a 300 Hz sampling rate).  

 
Detrended Fluctuation Analysis (DFA) 
 

DFA was performed on the time-series derived from each movie segment, using a 

MATLAB package created specifically for biomedical time-series (Ihlen, 2012). This 

analysis estimates the power law exponent that defines the scale-invariant, or fractal, 

structure of a time-series. First, the time-series (amplitude of X and Y coordinate gaze 
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change over time) is converted to a random-walk-like structure by subtracting the mean 

value and then taking the integral. Next, the time-series is divided into 4 equal-sized non-

overlapping windows, and a polynomial trend (m=2) is fit to each window of data. The 

local root mean square (RMS) is then computed for the residual variation for each 

window of data. This process is then repeated for increasingly smaller window sizes, 

such that the relationship between amplitude of the residual noise and window size can be 

ascertained.  

DFA identifies the monofractal structure of the time-series as the power law 

relation between the overall RMS’s computed for multiple window sizes (Figure 2). This 

power law relation is indexed by α or the slope of the regression line fit to the 

log(frequency) and log(power) of the variation in the time-series. α denotes how fast the 

local RMS changes with increasing window sizes, summarizing the long-term memory of 

the series and quantifies the monofractal structure of a time-series on a continuum from 

white noise (a ~0.5), through ‘pink noise’ (a ~0.8), to brown noise (a ~1.5) as shown in 

Figure 5. 
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Figure 5. Visualization of time-series with different organizational structures from white noise, through 

pink noise, to brown noise with corresponding α values. 

 

Multi-fractal Detrended Fluctuation Analysis (MFDFA) 
 

To determine whether a time series exhibits change in the fractal scaling exponent 

over time, I used the direct determination method of the f(α) spectrum method (Chhabra 

& Jensen, 1989).  This method estimates α in the same way described in the Detrended 

Fluctuation Analysis section, but does so at a range of fluctuation sizes (q). The array of 

α values calculated at varying q’s is the multi-fractal spectrum width. If α varies as 

function of q then it is has a “wide” spectrum width and is multifractal; if it does not, then 

the time series is monofractal (Figure 6). Conceptually, this approach works because 

monofractal DFA assumes that these local fluctuations are normally distributed. 

However, when the state of a system changes (e.g. if the participant’s attention shifts), 

these local fluctuations become heterogeneously distributed, reflecting a period of large 
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behavioral variability (Ihlen & Vereijken, 2010). Thus, if a time series has multi-scale 

interactions and is characterized by these periods of non-gaussian distributions of local 

fluctuations, then calculating α at different fluctuation sizes (q) should yield a range of 

values.  

 

 

Figure 6. The scaling exponent α (described by the regression slope) calculated at different q’s.  

A shows a multifractal time series in which α varies as a function of q. B shows a monofractal time series 

where α does not change as a function of q. Figure from Ihlen (2012).  

Aim 1: Determine minimum amount of data needed for DFA  

 
Methods  
 
Participants. 

For Aim 1, I used the same sample as the one previously published in Stallworthy et al. 

(2020). Because the ultimate goal was to hopefully lower the threshold for the minimum 

required time series length for DFA, I wanted to use infant eye-tracking data that had 

passed the most stringent quality-related exclusionary criteria (Figure 7). For a more 

detailed explanation of our quality-control exclusion criteria, please see the Aim 2 

Methods section.  
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Figure 7. Flow diagram depicting the characteristics of the original sample from Stallworthy et al. (2020). 

Participants were sequentially excluded for low eye-tracker precision, high levels of interpolated data, and 

time series < 1,000 samples.  

 

Selection of DFA parameters.  

There are both statistical and phenomenological considerations when deciding on DFA 

input parameters. My past work selected these parameters based on general 

recommendations (Ihlen, 2012) and published empirical studies that used DFA to analyze 

eye-tracking data (Coey et al., 2012b; Wallot, O’Brien, Haussmann, Kloos, & Lyby, 

2014). Prior to determining the optimal threshold for the minimum time series length, I 

visualized the impact of other parameters on estimates of α (Table 1) while holding the 

threshold for minimum time series length constant at 1,000 samples.  
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Figure S2. Flow diagram depicting characteristics of 

the original sample and the participants sequentially 

excluded for low eye-tracker precision, high levels of 

interpolated data, and time-series <1,000. 

Sam ple Flow Chart 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Original Sample 
N= 190 (86 females) 

Visits= 421 
Time-series= 14,1870 

Excluded for low eye-
tracker precision 

N= 5 
Visits= 28 

Time-series= 939 

Excluded for high 
interpolation levels 

N= 1 
Visits= 1 

Time-series= 2,788 

Excluded for time-
series < 1000 

N= 2 
Visits= 8 

Time=series= 2,223 

Final Sample 
N= 182 (84 female) 

Visits= 384 
Time-series= 8,920 
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DFA calculates the size of changes in a time series at different scales (Figure 8), 

and the parameters scmin and scmax determine the smallest and largest scales, 

respectively. Scres then determines the number of scales at which F is calculated. To 

examine how these parameters impact results, I calculated α using 32 different 

combinations of parameters (scmin=4, 8, 12, 16; scmax= time series length/4, time series 

length/10; scres=4, 8, 12, 16) for each time series. The range of each parameter was 

selected to be inclusive of past recommendations. I then examined how each factor 

impacted α and the goodness-of-fit of the linear scaling relationship (as indexed by the R2 

of the observed relationship between window size and RMS).  

Parameter Description Parameter used in original manuscript Values tested 

m* Polynomial order 

for detrending at 

each window 

 

2 (quadratic).  

 

Linear log2(scale)v log2(Fq)) plot indicated 

scale invariance compared to other m values. 

N/A 

scmin Minimum window 

size for detrending 

 

4  

Based on previously published work by 

Wallot et al., 2015; Coey et al., 2012) 

4, 8, 12, 16 

scmax Maximum window 

size for detrending 

Length of time series/4  

Based on Ihlen (2012) 

Length/4, 

Length/10 

scres Total number of 

window sizes with 

which to detrend 

and calculate local 

RMS 

 

4  

Accommodates time-series closer to 1000 

data points long. 

4, 8, 12, 16 

Table 1. Description of input parameters for DFA.  

*The m parameter determines which polynomial order should be used for the detrending of the time series 

prior to calculating RMS at each scale. In the original paper we used m=2 (quadratic detrending), because 

the log-log plots of that this yielded scale invariance compared to the other m values. I opted to not 

manipulate this parameter, since this was determined using visual inspection. 
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Figure 8. RMS is calculated at multiple scales defined by scres and scmax. for a time-series with 8,192 

samples when scmin=16, scmax=1024, and scres=7.  

At each scale: The time series is separated into n bins (n is determined by the scale, where n=time series 

length/scale). RMS is calculated at each bin. Then, the overall RMS is calculated for the time series (red 

line). At the smallest scale (16), the time series is broken up into 512 16-sample length bins (8,192/16). At 

the largest scale (1024), the time series is broken up into 8 1,024 sample-bins (8,192/1024). This is done 7 

times (scale=32, scale=64 …). 
 

Table 2 summarizes the mean and variance of α and R2 estimates at each level of 

scmin, scmax, and scres. Mean α estimates were stable once the smallest segment size 

(scmin) was increased from 4 to 8; doing so decreased the average α estimates by 0.05, or 

0.46 SDs. This corroborates past recommendations which note that when the minimum 

segment size is too small, α estimates get inflated (Ihlen, 2012). The scmin parameter had 

less of a meaningful impact on r2 estimates, which ranged from 0.97-0.98 at all levels of 

scmin, indicating good linear fit. Moving forward, I adopted set scmin=8.  

Changing scmax from length/4 to length/10 (thereby decreasing the maximum 

window size) led to slightly increased estimates of the mean and SD of α. To investigate 

this the impact of scmax for shorter and longer time series (defined by a median split of 

1,654 frames) I plotted the relationship between scmax and α estimates as a function of 
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time series length (Figure 9). When the maximum segment size is too small α – as was the 

case for shorter fixations where scmax was set to length/10 rather than length/4) – 

estimates are more variable (and in rare cases have negative values). This parameter did 

not meaningfully impact R2  estimates. Given these visualizations, I will continue using 

scmax=length/4.  

Finally, increasing the total number of window sizes at which RMS is calculated 

(scres) did not have a meaningful impact on α or R2 estimates. However, given that there 

is no reason to not increase this value other than increased computational burden, I 

doubled the number of window sizes from 4 to 8.  

 
 Mean α SD α Mean r2 SD r2 

scmin     

4 0.83 0.12 0.98 0.04 

8 0.78 0.14 0.98 0.05 

12 0.78 0.15 0.98 0.05 

16 0.78 0.15 0.97 0.06 

     

scmax     

Length/4 0.78 0.13 0.98 0.05 

Length/10 0.80 0.16 0.98 0.05 

     

scres     

4 0.80 0.14 0.98 0.04 

8 0.79 0.14 0.98 0.05 

12 0.79 0.14 0.98 0.05 

16 0.79 0.14 0.97 0.05 

Table 2. Impact of parameters (scmin, scmax, and scres) on α and r2.  
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Figure 9. α plotted against the continuous length of the segment size of the largest window (scmax) for 

longest and shorter fixations.  

For shorter fixations, setting scmax to length/10 (red) resulted in the largest window size being less than 

200 samples, and less stable estimates of α.  

 
Creating Truncated time series segments.  

Each time series of length=n was truncated two ways  (Figure 10). First, from the 

beginning of the time series (Xt=1) with truncated segments increasing by increments of 

100 samples (e.g., {Xt=1:Xt=100, Xt=1:Xt=200, … Xt=1:Xt=n}). Then, time series were 

truncated from the end of the time series (e.g. {Xt=n-100:Xt=n, Xt=n-200:Xt=n, … Xt=100:Xt=n}). 

To ensure that each segment length increased by 100 samples, the original time series 

was truncated to ensure that n was divisible by 100 (e.g. the last 5 samples would be 

trimmed from a time series with 1,005 samples). This yielded (n/100)*2 – 1 truncated 

versions of each times series.  

Truncated segments came from two types of time series: time series of real infant 

eye-track data and simulated pink noise. For the real eye-tracking data, the final sample 

from Stallworthy et al. (2020) was used. Each time series passed stringent quality control 
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assessments, and was at least 1,000 samples long. The final sample included data from 

182 infants (84 female), 384 visits, and 8,920 time series (average length=1,685, 

min=1,000, max=2,900) (Figure 7). 

10,000 pink noise time series with a sampling rate of 300 Hz (the sampling rate of the 

real eye-tracking data) were simulated using the tuneR package. The overall distribution 

of time series length of the real eye-tracking data was modeled, so that the simulated time 

series could be drawn from a similar distribution. Due to the skewed nature of the 

observed distribution of real time series length, the parameters for a Johnson distribution 

were estimated, and were then used to create a random distribution. The duration of each 

simulated time series was determined by randomly selecting from the population 

distribution of this random distribution.  

 

The bolded part of the time series indicates which section of the time series was used for to estimate α. 

Panels on the left depict removing the end of the time series, such that segments begin at t=1, and grow 

increasingly longer (Xt=1:Xt=100, Xt=1:Xt=200, … Xt=1:Xt=n). Panels on the right depict removing the beginning 

of the time series, such that segments end at t=n, and grow increasingly longer by starting earlier in the time 

series (Xt=n-100:Xt=n, Xt=n-200:Xt=n, … Xt=100:Xt=n).  

 

Outcome Measures.  
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Figure 10. Schematic of how time series were truncated. 
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Our primary aim was to determine how the time series length (n) impacts the mean and 

variance of α estimates. Additionally, we examined the impact of n on the goodness-of-fit 

of the scaling function that determines α. This scaling function describes the relationship 

between segment size (frequency) and RMS (power). Importantly, DFA assumes that this 

scaling function is linear (Figure 11), and poorly selected input parameters can lead to a 

violation of this assumption (Ihlen et al., 2012). Thus, it is possible that including time 

series that are too short may also lead to a non-linear relationship between power and 

frequency. The R2 of the observed relationship between segment size and RMS relative to 

the estimated linear function used to estimate α was used to index how well the observed 

estimates fit a linear slope.  

 

 

Figure 11. Figure from Ihlen et al. (2012).  

The scaling function between sample size (X-axis) and overall RMS (Y-axis) is assumed to be linear. The 

data shown here fit a linear slope (e.g., the points measured at each segment size fit well with the linear 

slope). 

 

Inclusion Criteria.  
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Both the number of truncated time series and the maximum length of truncated time 

series depends on the original time series length (n). Due to the minimum required data 

threshold (n≥1,000), each time series was able to be truncated into at least 19 segments 

(Figure 12). Time series longer than 1,000 samples generated more than 19 segments, 

and included truncated segments longer than 1,000 samples. For example, a time series 

with 1,200 samples would generate 23 segments ((1,200/100)*2-1) and longest truncated 

segment would be 1,100 samples long.  To ensure that the effects of truncated time series 

length at longer lengths (e.g., 2,500 samples) were not just reflecting a minority of the 

sampled time series, truncated segments of a given length were retained if that length was 

able to be generated from at least 25% of the original time series. 

Of the 8,920 real time series, 291,724 truncated segments were generated with an 

average length of 1,685 samples (min=1,000, max=2,800). Truncated segments with 

n≥2,200 were generated from fewer than 25% of the time series, and were excluded from 

analyses. The final sample included 278,441 truncated segments, with an average of 31 

truncated segments generated for each time series (min=19, max=44).   

The 10,000 simulated time series had roughly the same distribution of length as the 

observed sample of real time series (Average length=1,719, min=1,000, max=2,800). In 

the case of the simulated time series, truncated segments with n ≥ 2,300 did not reach the 

25% threshold, however we excluded truncated segments with n ≥ 2,200 to be consistent 

with the analyses on the real eye-tracking data. The final sample of simulated data 

included 333,934 truncated segments, with an average of 33 truncated segments 

generated for each time series (min=19, max=55).  
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All time series had a minimum length of 1,000 samples, and generated truncated segments of lengths {100, 

200, … 1,000}. Truncated segment with length >1,000 therefore represented a proportion of the original 

time series sample. The figure on the left shows these proportions for the truncated segments generated 

from the real eye-tracking data, while the right shows these proportions generated from the simulated time 

series. 

 

Analyses 
 
α and R2 were estimated for each truncated version of every time series, as described in 

General Methods. To determine the impact of time series length on average estimates of 

α, multi-level linear mixed effect models were estimated, with a random effect of 

intercept included for each unique time series (n=8,068). Separate models were estimated 

to determine whether a linear or quadratic effect of segment length (n), or an intercept-

only model provided the best model fit. Model comparisons were conducted using chi 

square log likelihood ratio test and Second-Order Akaike Information Criteria (AIC; 

accounting for sample size and model complexity).  

To determine the impact of time series length on the variability in estimates of α, a 

series of intercept-only multi-level linear mixed effects models were estimated with 

increasingly restricted datasets. First a model was fit using the whole dataset, then with 

all segments with n≥100, n≥200, etc. The intra-class correlations (ICC) was then 

calculated for each model. A high ICC indicates a greater proportion of variance in the 

Figure 12. Proportion of truncated time series of each length.   
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data is between time-series; in other words, there is more variability in α accounted for by 

the different time series relative to the variability observed across truncated segments 

within the same time series. On the other hand, a low ICC would indicate that a greater 

proportion of variance in the data is within time-series, which would suggest that 

including shorter segment lengths leads to more variable estimates of α. 

 

Results 
 
Impact of truncated segment length on R2 

As expected, R2 values (reflecting the correlation between the linear slope of α, and the 

observed relationship between power and frequency) were very skewed, and 

overwhelmingly indicated good model fit, with R2≥0.9 for 95% of the truncated segments 

generated from real data. With the exception of the 100-sample-long truncated segments, 

56.9% of which had good model fit, all other truncated segment lengths had at least 

91.8% time series with good model fit.  

Unsurprisingly, 99% of the simulated pink noise time series data – which, by 

definition, should have a linear relationship between power and frequency – had good 

model fit. All of the truncated segment lengths with bad model fit were 100-samples-

long, indicating that there is a lower limit for generating stable estimates of α even for 

simulated pink noise.  

 

Impact of truncated time series length on mean estimates of α.  
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Analyses using real eye-tracking data indicated that the best fitting model included a 

quadratic term for segment length. For every 100-unit increase in segment length, there 

was a statistically significant but negligible increase in α (ΒLength=0.0023, SE=7x10-5), 

with the rate of change in α diminishing as segment length increased (ΒLength^2=-3x10-5, 

SE=3.7x10-6, ΔLog-likelihood=177). To underscore how negligible this effect was, the 

estimated α at the maxima of the function (segment length=1,385) was 0.79, relative to 

0.77 at the intercept (segment length=100).  

Analyses using simulated pink noise time series yielded similar results. Again, the 

best fitting model indicated that there was a significant but negligible quadratic effect of 

segment length on α (ΒLength =0.0013, SE=0.0004, ΒLength^2=-3x10-5, SE=3.7x10-6, ΔLog-

likelihood=325). Model results plotted over raw data can be found in Figure 13. Analyses 

were re-run excluding all truncated segment lengths with R2<0.9, and yielded very 

similar results. Overall, with the exception of the very short truncated segment lengths, 

the truncated segment length had a minimal impact on average estimates of α. 
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Figure 13.. Raw α distributions for each truncated segment length. 

Distributions are plotted, overlaid with model results testing the relationship between truncated segment 

length and α for truncated segments generated from a. real eye-tracking data and b. simulated data. 

 

Impact of time series segment length on variance in estimates of α. As can be seen in 

Figure 13, while segment length has a minimal impact on the mean estimate of α, the 

variance of α is quite high at shorter segment lengths.  

Analyses using real eye-tracking data indicated that there was a quadratic effect of 

increasing the minimum segment length when calculating the ICC of α. As the datasets 
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became more restrictive (e.g., ICC was calculated including segment lengths longer than 

200, 300, 400, etc.), there was an increase in the proportion of variance accounted for by 

the time series (BMinimum Length=0.179, SE=0.018, p=2x10-16), with this increase 

diminishing at higher thresholds (BMinimum Length^2=-0.0046, SE=0.0005, p=2x10-16) 

(Figure 14). 

Because the coefficients in Beta regression are expressed as logits, to interpret 

these results the predicted ICC for each level of Minimum Length was back-transformed 

to probabilities (which in this case can be interpreted as the ICC, where 0≤ICC≤1). When 

all time series were included in analyses, 50.7% of variance was between time series 

(e.g., the length of the truncated version was accounting for almost as much variance in α 

as the time series itself). For reference, when segments with length ≥ 1,000 (the minimum 

required length suggested by Ihlen (2012)) were included, 79.7% of variance was 

between time series. The change in ICC from one minimum length to the next was 

plotted to determine if there were any “elbows” where the change in ICC begins to level 

off (Figure 14). Two potential elbows were identified – at Minimum Length=400 and 

800.  

 Overall, similar findings were observed with the simulated time series. Again, as 

datasets became more restrictive, there was an increase in the proportion of variance 

accounted for by the time series (BMinimum Length=0.071, SE=0.052, p=0.18), with this 

increase diminishing as the threshold was raised (BMinimum Length^2=-0.003, SE=0.001, 

p=0.004). In this case, elbows were identified ad Minimum Length=500 and 900.  

  



 32 

 

Figure 14. ICC estimates as a function of segment length. 

Real eye-tacking data shown on the top row, simulated time series on the bottom row. a. The estimated ICC 

as a function of the minimum segment length thresholded are plotted over the observed ICCs. b. The 

change in ICC due to increasing the threshold of the minimum segment length is plotted, with identified 

elbows highlighted in the red dashed lines.   
 
Aim 1 Conclusions  
 These findings indicate that the minimum time series length had a greater impact 

on the stability of α estimates relative to mean α estimates or R2. Minimum length 

thresholds of 400 and 800 were identified as potential inflection points, where increasing 

the minimum lengths led to more moderate increases in ICC thereafter.   

 When considering which minimum required length to adopt moving forward, a 

few factors must be considered. Of the original sample of 14,187 time series, 2,223 were 

excluded for having fewer than 1,000 frames. While decreasing the minimum required 
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length from 1,000 to 400 samples would have increased our sample by 1,116 time series 

(thereby recovering about 50% of the excluded time series), 400 samples of eye-gaze data 

collected at 300 Hz corresponds to only 1320 ms of data. Given that the aim of the 

present study is to understand visual exploration in infants, it is questionable whether 

including such short series has face validity.  

Instead, for further analyses with this dataset, I will use a minimum required data 

threshold of 800, the second elbow in Error! Reference source not found.a. If we had 

included time series with length ≥ 800, this would have increased our sample by 439 time 

series, thereby recovering about 20% of the excluded time series).  Though the elbow 

identified using the simulated time series is 900 segments, ICC increased minimally 

when the threshold was raised from 800 to 900. In an effort to retain as much data as 

possible, I will use the elbow identified in the analyses that used the real eye-tracking 

data. 

 

Aim 2: Replicate DFA findings with a larger sample and wider age-range  
 

Methods 
Original Sample 

This analysis included previously published data (Stallworthy et al., 2020), as 

well as data collected after the date of the last visit included in that manuscript (January 

2018). The original sample included 32,151 time-series of eye-tracking data collected 

from 344 1.68-60.81-month-old infants (171 females, mean age= 16.23 months) across 

903 visits to the lab. As part of a planned missingness design, children contributed 
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between 1 and 6 waves of data across this age span (mean 2.62 waves) during visits to the 

lab (Figure 15). 

 

Figure 15. Final sample with eye-tracking data.  

The majority of data came from Cohort 1, infants who were recruited for a brain imaging study (247 

infants, 697 visits). Cohort 2 was comprised of infants recruited for a cross-sectional behavioral visit (72 

infants).   

 

Quality-control exclusion criteria. A detailed description of the quality-control 

exclusion criteria can be found in Stallworthy et al. (2020). Broadly, time series were 

excluded if an infant had poor eye-tracker calibration precision, if too much data were 

linearly interpolated when generating the time series for DFA, if the time series were too 

short (<800 frames, as determined in Aim 1), and if the time series’ DFA yielded poor 

linear fit thereby suggesting unstable estimates of α. Ultimately, I excluded 13,512  time 

series for quality-control (42% of the original 32,151 time series). The final sample 
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included 18,639 time series (a 52% increase from the sample we have previously 

published on). A flow diagram of the exclusionary process is shown in Figure 16.  

 

Figure 16. Flow diagram of the exclusionary process for Study 1, Aim 2. 

Analytic plan.  

 

As described in the general Methods section, α, or the linear relationship between 

power and frequency, was calculated for each time series. I used linear mixed effects 

models to examine growth in α across time. First, a model was fit with random effects for 

all possible levels (person, visit, movie) to determine the proportion of variance 
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attributable to each level. Because only 2.9% of total variance was attributable to the 

movie grouping (relative to 11.6% to the person grouping, 23.0% to the visit grouping, 

with 62.5% accounted for by residual variance) I opted to only model random intercepts 

for the person (Level 3) and visit (Level 2), with variables related to the time series 

designated as Level 1 variables.  

 The exclusion criteria covariates that index eye-tracking quality were also tested 

at all appropriate levels. Level 1 control covariates included proportion of interpolated 

data, and the length of the longest contiguous sequence of gaze data used for DFA (both 

centered at the visit mean). Level 2 control covariates included the average proportion of 

interpolated data across a visit, the average length of the longest contiguous sequence 

across a visit, and the estimated eye-tracker precision (all centered at the person mean). 

Level 3 control covariates included the infant’s average proportion of interpolated data 

across all of their visits, the infant’s average length of the longest contiguous sequence of 

gaze data across all of their visits, and the infant’s average eye-tracker precision across 

all of their visits (all centered at the grand mean),as well as their cohort and sex.  

 The goal of the first analysis was to examine age-related change in α, and whether 

growth curves differed as a function of stimulus condition (Social vs. Pixelated vs. 

Attention-cue). Therefore, the main predictors of interest were linear and quadratic 

effects of age, stimulus condition, and their interactions. I predicted that I would replicate 

the linear age-related increase in α from 3-36 months, and that with the increased sample 

size and age-range, we might see a quadratic effect of age where the increase levels out 
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after 36-months. Furthermore, with the 52% increase in time series contributing the 

analysis, we might be better powered to identify Age x Condition interaction effects.  

 Linear mixed effects models were fit in the following steps. First, I determined 

the appropriate functional form by for the fixed and random effects of age (linear and 

quadratic effects were tested). Second, I added in all potential control covariates into the 

model, and retained the covariates that were significantly associated with α. Third, I 

tested for effects of stimulus type (Pixelated, Attention Cue) with the Social stimuli as the 

reference group. Finally, I tested whether the growth rates differed as a function of 

stimulus type by testing for interactions between stimulus type and age. At each step, 

model comparisons were conducted using chi square log likelihood ratio tests and 

Second-Order AIC. Additional model parameters were retained only if AIC values and 

likelihood ratio tests indicated that adding them led to a model that better fit the data.  

The goal of the secondary analysis was to test the association between α and 

spontaneous face-looking. To do this, we tallied the number of gaze coordinates recorded 

within the boundaries of the face areas of interest (AOIs) and the number of gaze 

coordinates recorded outside of these AOIs. These tallies were used to calculated the 

proportion of time spent within a face AOI relative to anywhere else on the screen. Open 

Source Computer Vision Library (Bradski, G., & Kaehler, 2008) was used to 

automatically identify face-related Areas-of-Interest (AOIs) for each movie-frame in the 

non-pixelated movies, and these same AOIs were applied to the movie’s pixelated 

counterpart.  
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I then ran a second series of linear mixed-effects models, only including time 

series from the Social and Pixelated trials (n= 14,581 time series). Models were fit using 

the same steps as above, with the addition of four variables allowing us to examine the 

effects of face looking at all three levels: between-person face-looking (centered on the 

grand mean), within-person face-looking (centered on the individual’s average face-

looking), and within-visit face-looking (time series average, centered on the visit’s 

average face-looking). I also tested for interactions between Face-looking and stimulus 

Condition.  

 

Results 
 
Fractal organization of the infant visual system  

Scaling exponent α values were approximately normally distributed (skew = 0.34, 

kurtosis = 2.8), with a mean of 0.78 (range: 0.34–1.38). 73% of the time-series across all 

3 conditions fell within what is thought to be the optimally flexible fractal, pink noise 

range (α ~ 0.7 to 1.0; Coey et al., 2012a; Ihlen, 2012). This proportion is notably smaller 

than the proportion found in Stallworthy et al. (2020), and is likely due to increasing the 

minimum window size (scres) from 4 to 8, as described in Aim 1.  

 

Age-related change and effects of stimulus type on gaze complexity in stimulus  

All model effects reported in this section are standardized coefficients (e.g. 

Β*(SDy/SDx)). The baseline linear mixed effects model found α values increased with 

age (ΒAge= 0.29), with growth in α decreasing over time (ΒAge2= -0.04, ΔLL=81, 

p=0.001). After adding a series of quality control covariates and retaining significant 
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effects (Table 3, Model 2), I assessed the effects of Stimulus condition on α. There were 

significant fixed effects of stimulus type, such that α was lower when infants watched 

Pixelated movies and Attention Cues relative to the Social movies (ΒPixelated=-0.11, 

ΒAttention-Cue = -0.13, ΔLL=266, p=2.2e-16).  

A significant Condition x Age interaction (Figure 17) indicated that growth in the 

fractal organization of infants’ eye gaze differed across stimulus type (ΔLL=25, p=2.5e-

05). Tests of simple slopes suggested that while positive linear growth in α occurred for 

all Conditions (i.e., Social b=0.20, p=1.3x10-16; Pixelated b=.12, p=9x10-5, Attention-cue 

b=0.065, p=1.4x10-2), the slope was significantly greater in the Social condition 

compared to both the Pixelated condition (Chisq=70.3, p=2.2x10-16) and the Attention 

Cue condition (Chisq=92.15, p=2.2x10-16). Additionally, simple slopes revealed the 

significant decrease in growth over time was limited to the Social condition (i.e. Social 

b=-0.06, p=0.01; Pixelated b=-0.01, p=0.68, Attention Cue b=0.02, p=0.50).   
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Table 3. Table of model evidence displaying the effects of age and each of the stimulus conditions on α 

values. 

The Social condition is set as the reference event. Estimates are standardized. Model 4 is the final, best-

fitting model.  
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Figure 17. Effects of Condition x Age plotted over raw estimates of α.  

Y-axis limits set to mean α +/- 2 SDs.  

 
Visual complexity and gaze to faces.  

Multi-level logistic regression was used to determine whether gaze location (on a face or 

non-face region) varied between stimulus conditions. The baseline model found that the 

probability of face-looking increased with age (ΔLL=179197, p=2.2e-16) by about 50.8% 

each month. This model included a random effect of age, which accounted for 1.7% of 

the between-person variance. As expected, infants spent less time fixating on faces during 

the Pixelated condition (b=-1.66, a 16% reduced probability of looking at faces, all else 

equal), compared to the same facial location during the social condition (ΔLL=873179, 

p=2.2x10-16). Finally, there was a significant Age x Condition interaction (b=0.004, 

p=2x10-16) indicating that while infants spent less time looking at the face AOI during the 

Pixelated trials, age-related growth in face-looking was slightly greater for these trials.  
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In addition the growth trajectories of changes in α over time, I examined whether 

infants’ spontaneous face-looking would correspond with changes in gaze complexity. To 

test this, I ran a second set of linear mixed effects models to examine whether there was a 

significant effect of time spent fixating on face relative to other areas of the screen on α 

(in addition to the aforementioned Age and Condition findings).  

The best fitting model indicated that on average, α increased as a function of face-

looking (ΔLL=25, p=4x10-11) (see Table 4 for full model results). This effect was 

significant at all levels (i.e. between-person, within-person, and within-visit face 

looking). The effect of face-looking on α also varied as a function of Condition (Δ LL=7, 

p=0.003). This interaction was significant for between-person face-looking (b=-0.02, 

p=0.009) and within-person face-looking (b=-0.02, p=0.01). These results indicated that 

infants who tended to spend more time attending to the face AOIs across all of their 

visits, on average, had higher α values particularly in the Social movies where the face 

AOIs contained richer social information (b Social=0.10, p=2x10-07; b Pixelated=0.05, 

p=.006; Chisq=21.4, p=3.8x10-6). Furthermore, during visits when infants spent more 

time attending to the face AOIs relative to their own average, infants had higher α values 

particularly in the Social movies (b Social=0.18, p=2x10-7; b Pixelated=-.10, p=.006; 

Chisq=21.9, p=2.8x10-6) (Figure 18). 
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Table 4. Table of model evidence displaying the effects of face-looking and stimulus condition on α values. 

The Social condition is set as the reference event. Estimates are standardized. Model 5 is the final, best-

fitting model. 
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Figure 18. Estimated effects of within-person Face-looking x Condition plotted over raw estimates of α.  

Between-person face-looking variance is held constant. Y-axis limits set to mean α +/- 2 SDs. 

 

Aim 2 Discussion 
 

Overall, these results are similar to our past findings on age-related growth in eye-gaze 

fractality. By increasing the sample age-range and including older children, I am now 

able to model the decay of the age-related growth in fractality. This pattern corroborates 

other’s findings that infants’ attention becomes more predictable and focal over the first 

year of life when watching movies with social content (Frank, Vul, & Johnson, 2009), but 

that predictability is more stable from 12-30 months (Frank, Vul, & Saxe, 2012). I also 

found that the Social movies elicited increased fractality relative to both the Pixelated 

movies and Attention cues, perhaps due to their more engaging content. The growth 

curve for the Social condition also differed in two ways: First, the initial linear increase 

was steeper, and second there was a significant decrease in growth rate over 

developmental time. While the engaging social content may initially boost the self-
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organizational properties of infants’ eye-gaze, the self-organizational properties become 

more similar across the conditions as infants’ attention abilities develop.  

One noteworthy difference from Stallworthy et al. (2020) is that in the present 

sample the effect of face-looking on α was modulated by stimulus condition. While the 

proportion of time spent in the face AOIs was positively associated with α in both 

conditions, this effect was stronger for α values calculated from the Social movies. In 

other words, infants saw a greater increase in their eye-gaze fractality when attending to 

an area of the screen with rich social information relative to when they were looking at 

the same region but with degraded/pixelated social information. Given the small effect 

size of this interaction, it is possible that we were underpowered to detect it in our 

previous work.  

 
 

Aim 3: Examine development of multi-spectrum width in infants  
 

Methods 
 
Calculating multi-fractal spectrum width  

To estimate the multifractal (MF) spectrum width, a set of exponents are applied to the 

local fluctuations (RMS) (q={x-5, x-3, x-1, x0, x1, x3, x5}), and the scaling exponent (α) is 

calculated at each of these q-order statistical moments. Though there is debate over which 

range of q’s should be used to estimate spectrum width (Ihlen & Vereijken, 2010), I used 

the range recommended in Ihlen (2012) for biomedical time series. The MF spectrum 

width was then calculated for each time series as the difference between the largest and 

smallest H(q).  
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Comparison to linear surrogates 

Because biological time series with 1/f power law scaling (e.g. pink noise) can sometimes 

yield spurious non-zero multifractal spectrum widths (Ihlen & Vereijken, 2010), it is 

important to statistically validate the observed multifractal spectrum width. To do so, I 

generated eight surrogate time series for each original eye-tracking time series using the 

iterative amplitude-adjusted Fourier-transform algorithm (IAAFT; Schreiber & Schmitz, 

1996). This method reorders the original values in a way that preserves the average 

power-law scaling and probability density function, while disrupting the original 

temporal sequence.  

As in previous work (Eddy & Kelty-Stephen, 2015; Ihlen & Vereijken, 2010), I 

used these surrogates to test the null hypothesis that the original time series’ MF width 

did not statistically differ from the linear surrogate data’s MF width. Using this 

framework, if a time series yields a non-zero spectrum width that does not fall within 

95% confidence intervals of the widths generated by its linear surrogates, then this would 

indicate the presence of non-linear multi-scale interactions. I used a one-sample two-

sided t-test comparing the original data’s spectrum width to the sample of linear 

surrogates’ spectrum widths was used, and coded t-statistics with p<0.01 as significant.  

In addition to statistical significance, the size and sign of the t-statistic contains 

information regarding the marginal difference between the original series spectrum and 

the surrogate spectra (see Figure 19 for an illustration). The size and sign of this 

difference indicates how much the nonlinearity expands or contracts behavioral 
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variability within a task space. Simulation studies have shown that nonlinear interactions 

can lead to the original spectrum width being significantly narrower than the surrogates’ 

when the interactions across time counteract each other and restrict variability (Lee & 

Kelty-Stephen, 2017). Thus, when widthORIGINAL < widthSURROGATES (indicated by a 

positive t-statistic) this indicates the presence of nonlinear interactions that stabilize 

behaviors. On the other hand, when widthORIGINAL > widthSURROGATES (indicated by a 

negative t-statistic) this indicates the presence of nonlinear interactions across scales that 

tend to increase variability in behaviors (Kelty-Stephen, 2018).  

The top and bottom 1st percentile of t-statistics were identified as extreme outliers 

and removed (n=414 time series). Of the 18,650 time series included the analysis, 11,843 

(63.5%) had a significant t-statistic (e.g. one can reject the null that the width of the time 

series is equivalent to the width of its surrogates). Of these significant t-statistics, 5,241 

(44.3%) were negative, indicating that the time series’ MF-width was significantly 

greater than the distribution of its surrogate widths. The remaining 55.7% were positive, 

indicating that the time series’ MF width was significantly lower than the distribution of 

its surrogate widths).  



 48 

 

Figure 19. Example of spectrum widths and the t-statistics that they yield.  

An MF spectrum width that falls within the distribution of its surrogates’ spectrum widths would yield a 

non-significant t-statistic (e.g., the MF width is not significantly different then the surrogate distribution). 

An MF spectrum width with a value lower than 5th percentile of the distribution of spectrum widths yields a 

significant positive t-statistic (e.g. the width is significantly lower/narrower than the surrogate distribution). 

An MF spectrum width with a value higher than the 95th percentile of the distribution of spectrum widths 

yields a significant negative t-statistic (e.g. the width is significantly higher/wider than the surrogate 

distribution). 

 

Analytic approach 

Visualizations suggested that negative t-statistics (widthORIGINAL > 

widthSURROGATES) were overrepresented in young infants (Figure 20). To model changes 

in the class of time series (tMF=non-significant/monofractal, significant 

positive/multifractal stabilizing, significant negative/multifractal destabilizing) the 

number of each class of time series was tallied for each visit. To test for effects of 

stimulus Condition, tallies were calculated separately for each condition (Social, 

Pixelated, Attention-cue). I then used a mixed-effects Poisson regression to estimate the 

MF width 
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count of t-statistics in each class. The tallies of each class of t-statistic was entered at 

Level 1 variables, which were grouped within each infant (Level 2).  

Next, I tested for interactions between tMF and Age to determine whether the 

number of each type of time-series changes as a function of age. I then tested for 

interactions between tMF and stimulus Condition (Pixelated, Attention-cue, with Social as 

the reference group) to determine whether the number of each type of time-series varied 

between conditions.  

 

Figure 20. T-test statistic comparing the MF spectrum width of a time series against the distribution of its 

surrogates’ (n=8) MF spectrum widths.  

Significant negative values indicate that the time series’ width is greater than the surrogate widths, 

indicating multi-scale interactions that tend to increase variability in system dynamics. Significant positive 

values indicate the time series’ width is narrower than the surrogate widths, indicating multi-scale 

interactions that tend to constrain variablity in system dynamics. Non-significant values (shown in the 

cooler colors) indicate systems that do not have significant cross-scale interactions.   

 

Results 
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 Results for Poisson regression are reported in Table 5 with the significant positive 

t-statistics as the reference group (e.g., cases where widthORIGINAL < widthSURROGATES). As 

expected, the baseline model indicated that the relative odds of a time series having a 

significant negative t-statistic (e.g., widthORIGINAL > widthSURROGATES) compared to a 

significant positive t-statistic (e.g., widthORIGINAL < widthSURROGATES)  was 0.78 

(ΔLL=121, p=2.2x10-16). The relative odds of a time series having a non-significant t-

statistic (e.g. widthORIGINAL ≈ widthSURROGATES) compared to significant positive was 1.15 

(ΔLL=42, p=2.2x10-16). Put simply, these results confirm what was evident from raw 

counts; the number of time series where tMF=Non-significant > tMF=Positive > 

tMF=Negative. As expected, these odds ratios diminished as infants got older (b Age x 

tMF=n.s.=-0.004, b Age x tMF=Negative=-0.012, ΔLL=37, p=6.6x10-16). In other words, infants 

were less likely to have negative t-statistics (reflecting nonlinearity that expands 

variability) as they got older (Figure 21).  

Next, I tested for interactions between t-statistic and stimulus Condition by adding 

main effects of Condition (Pixelated and Attention-cue, with Social as the reference 

group) and testing for interactions between tMF=negative x Condition, then tMF=non-

significant x Condition, and then tMF =negative x Condition + then tMF =non-significant x 

Condition. The model including interaction terms for both tMF =negative and tMF =non-

significant failed to converge, and was not included as a candidate model. Of the 

remaining models, the best-fitting model included the interaction for Condition x 

tMF=negative (b tMF=negative x Pixelated = 0.27, b tMF=negative x Attention Cue = 0.20; 

ΔLL=668, p=2.2x10-16). In other words, the finding that there were fewer negative t-
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statistics (reflecting nonlinearity that expands variability) compared to positive t-statistics 

(reflecting nonlinearity that contracts variability) was amplified in the Social condition 

(Figure 22).   

 

Table 5. Table of model evidence displaying the effects of age and each of the stimulus conditions on 

multifractality.  

Models or linear mixed-effects Poisson models Estimates are converted to incidence rate ratios. Model 3 is 

the final, best-fitting model. 
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Figure 21. Interaction between Age and t-statistic type.  

Trajectories show marginal means estimated from Model 3, with 95% CI. As infants got older, positive t-

statistics were more likely and negative t-statistic were less likely.  

 

Figure 22. Interaction between Stimulus Condition and t-statistic type.  

Bar plots show marginal means estimated from Model 3, error bars are 95% CIs. The decrease in odds of a 

negative t-statistic was greatest in the Social condition.  

Aim 3 Discussion 
 
Contrary to my prediction that infants’ eye-gaze would show increased cross-scale 

interactions as they got older, there were age-related changes in the quality rather than the 

quantity of cross-scale interactions. Specifically, as infants got older their eye-gaze was 

more likely to show evidence of nonlinear interactivity that constrains system variability 

and less likely to show evidence of nonlinear interactivity that expands system 
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variability. These findings corroborate past work that has shown that entropy, or 

unpredictability, of eye-movements decreases as infants get older (Frank et al., 2009). At 

all ages, infants were more likely to show evidence of nonlinear interactivity that 

contracts system variability, particularly in the Social condition.  

These findings support theoretical models of early visual social engagement. 

These theories posit that early attentional biases for social stimuli may reflect more 

“reflexive” sub-cortical attention pathways and experience-expectant development, 

whereas later-emerging preferences for social stimuli reflect more volitional and 

cortically-driven pathways shaped by experience-dependent development. Indeed, human 

newborns reflexively orient to social stimuli from birth (Bardi, Regolin, & Simion, 2011; 

Farroni et al., 2002; Valenza et al., 1996), suggesting that these early biases could 

provide infants with the early visual experiences with the social world that then tune 

cortical processing of social information. This bidirectional feedback loop occurs 

between bottom-up and top-down attention processes across timescales, and would 

theoretically yield more predictable orienting to social information. The present finding 

that infants are more likely to show cross-scale interactivity that constrains variability as 

they get older, and particularly when watching movies with social content, may reflect 

both an increase in interactivity between bottom-up and top-down attention, as well as 

increased experience with the social world.   

 Another potential explanation of these changes in cross-scale interactivity is 

changes in the frequency of saccades relative to fixations. Past work has shown that most 

of the non-linear interactivity in adults’ eye-gaze data comes from saccades rather than 
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fixations (Amor et al., 2016). While this work differs from the present in that it did not 

use linear surrogates or distinguish between the quality of the cross-scale interactivity, it 

raises the possibility that some of these findings are related to age-related changes in 

more macro measures of eye-gaze. Future analyses will focus on better understanding the 

relationship between micro and macro gaze dynamics.  

 

Discussion 

 
There were four main findings from Study 1. First, from a methods perspective, I 

found that amplitude time series from 300 Hz infant eye-tracking data as short as 800 

samples can reliably be used to estimate α for DFA (Error! Reference source not 

found.). Given the challenges associated with collecting data from infants, this finding 

has important practical implications for increasing the statistical power to detect both 

within- and between-person effects. Second, I replicated my past work showing that α 

increases linearly in the first three years of life (Figure 17). I then expanded on this work 

by including a wider age-range and a larger sample which allowed me to illustrate faster 

growth rates in the Social condition compared to both the Pixelated and Attention-cue 

conditions, and to model how this growth slows as infants get older. These results suggest 

that social content may elicit more fractally organized gaze strategies, particularly early 

in infancy when privileging social information may be particularly important for 

development.  

Third, I replicated my past work showing that α increases with face-looking 

(Figure 18). This finding was true both between-infants (e.g. infants who looked at faces 
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more than the group average had increased fractal organization) and within-infants (e.g. 

infants who showed increased face-looking during a visit relative to their own average 

showed increased fractal organization). Importantly, with the larger sample I was able to 

model how this relationship was moderated by stimulus content, and was stronger when 

infants were watching movies with Social content. In other words, spending more time 

attending to the same area of the screen had a stronger effect on α when that area 

contained richer social content.   

Fourth, I moved beyond DFA and modeled the multi-fractal spectrum width to 

determine whether infants’ eye-gaze shows cross-scale interactions. Results from these 

analyses indicated that 63.5% of time series showed evidence of cross-scale interactivity, 

and that the kind of cross-scale interactivity changed as function of age and stimulus 

content (Figure 21 and Figure 22). As infants got older they were more likely to show 

cross-scale interactivity that constrains system variability, and this kind of interactivity 

was more likely to be elicited in the movies with social content.  

These findings should be interpreted in light of several limitations. First, the 

decay in growth rate reported in Aim 2 should be replicated with a sample that includes 

more data in infants older than 36 months. Second, given the challenges associated with 

distinguishing fixations from saccades  --  both practically (Hessels & Hooge, 2019; 

Hessels, Niehorster, Nyström, Andersson, & Hooge, 2018) and conceptually (Kelty-

Stephen & Mirman, 2013) -- the present study did not attempt to measure associations 

between these more macro measures of oculomotor movements and the fractal properties 

of eye gaze. This leaves open the possibility that changes in the relative proportions of 
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these eye movements may be explaining some of the observed effects. That said, the 

finding that the effect of face-looking on α is moderated by stimulus condition suggests 

that these effects cannot be wholly explained by oculomotor movements, since looking in 

the same AOI yields different results when that region of the screen has social 

information.  

In summary, these results suggest that the visual attention system is well-

organized in infancy. They also shed light on both endogenous factors (e.g. age, 

proclivity to look at faces) and exogenous factors (e.g., stimulus content) that can 

influence these properties. While these results focus on a typically developing population, 

future work with the Infant Brain Imaging Study (IBIS) network will examine whether 

these metrics can be used to predict which infants are more likely to receive a diagnosis 

for autism spectrum disorders (ASD). Additionally, I will investigate how the 

development of functional brain networks supports these attentional processes, as 

described in Study 2.  
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Study 2 

Background 
 

The development of visual selective attention is critical for effectively engaging with an 

ever-changing world, and is dependent upon interactions between systems across 

multiple timescales and loci. During the first years of life, infants make rapid strides in 

their ability to engage in visual selective attention: At birth, infants are only able to orient 

to external stimuli in their environment, but by the end of the first year of life they are 

able to flexibly deploy interacting attention mechanisms, balancing internal goals and 

external stimulus demands (Figure 1). These developments in attention have been well-

documented using tasks designed to tease apart stimulus-driven and goal-driven attention 

(for a review, see Amso & Scerif, 2015), and using techniques designed to holistically 

measures system-wide complexity (Stallworthy et al., 2020). 

 These well-known changes in the dynamics underlying infants’ attention systems 

coincide with rapid changes in functional brain connectivity. Resting state MRI (rsMRI) 

measures this temporal correlation in the BOLD signal between brain regions (Gao et al., 

2017). The past decade has seen an explosion in research examining rsMRI in the 

developing brain (Zhang, Shen, & Lin, 2019). Most studies on changes in functional 

connectivity (FC) in the first years of life present cross-sectional evidence or 2-3 time 

points (Gao et al., 2011, 2009; Lin et al., 2008), with the exception of one longitudinal 

study examining growth in functional networks in 65 infants at 2 weeks, and 3, 6, 9, and 

12 months (Gao et al., 2014). Together these studies have shown that FC increases 
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rapidly in the first years of life, with higher-level networks that may support more 

experience-dependent processes (e.g. the lateral visual/parietal (V3), default mode (DM), 

salience (SA), and frontal parietal (FP)) showing protracted development relative to 

lower-level networks (e.g. sensorimotor (SM), auditory (AM), medial occipital (V1), and 

occipital pole (V2) networks). 

To my knowledge, no study has examined relationship between rsMRI and direct 

measures of visual attention in infants. In Study 1, I presented results that changes in eye-

gaze fractality dynamically change with infants’ spontaneous viewing patterns across 

seconds, but that there were also slower changes across the first years of life that tracked 

with between-person measures of age and face-looking. This raises questions about the 

neural mechanisms that explain these between-person developmental changes in eye-gaze 

fractality. The present study will examine the relationship between intrinsic functional 

connectivity within and between specific networks in the brain, and their association with 

fractal eye-gaze dynamics in infants.  

Based on data from adults and children, as well as theoretical models of attention and 

brain development in infants, I will focus on the default mode network (DMN), dorsal 

attention network (DAN), salience/cingulo-opercular network (Sal/CO) and the fronto-

parietal control network (FPC).  

 

The default mode network and the dorsal attention network  

The DMN has been linked to Attention-Deficit/Hyperactivity Disorder (ADHD) 

in adults (Castellanos et al., 2008) and elementary school aged children (Fair et al., 
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2010), and the DAN has been linked to anticipatory attention (Maurizio Corbetta, Patel, 

& Shulman, 2008). Connectivity within both of these networks increases rapidly in the 

first year of life (Fair et al., 2008; Gao, Alcauter, Smith, Gilmore, & Lin, 2015), and 

connectivity between these networks has been shown to decrease in the first year of life 

(Gao, Alcauter, Smith, et al., 2015), and become more strongly negatively correlated 

(Gao et al., 2012). In adults, individual differences in the strength of the negative 

correlation between these networks in both resting and task conditions is associated with 

less variable performance on a flanker test (Clare Kelly, Uddin, Biswal, Castellanos, & 

Milham, 2008). 

In Study 1 I presented evidence that the fractality of infants’ eye-gaze increased 

over developmental time, and that infants are more likely to have spectrum widths that 

indicate nonlinear system dynamics that constrain behavioral variability as they get older. 

Given the developmental progression of increased negative synchrony between the DMN 

and DAN networks, I predict that stronger negative DMN-DAN connectivity will be 

associated with more positive t-statistics, or increased multi-fractal spectrum widths that 

indicate a contracting of behavioral variability.  

 

The salience/cingulo-opercular network and frontoparietal control network 

  While the dorsal frontoparietal network has been implicated in goal-driven 

attention, the ventral frontoparietal network responds when an individual detects task-

relevant visual information (Corbetta, Kincade, Ollinger, McAvoy, & Shulman, 2000). It 

has been argued that while both the dorsal and ventral streams are important for 
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catalyzing the development of the PFC (as they are both critical streams of visual 

information), the ventral stream may explain more intra-individual differences given its 

role in processing stimuli that are learned through social interactions (e.g. faces), and 

labeled by caregivers (e.g. shapes, colors) (Rosen, Amso, & McLaughlin, 2019). I predict 

that fractality and MF spectrum width in the Social Condition – but not the Pixelated 

condition – will be associated with FC measures in these networks.  

 

The present study 

 
The present study will examine the relationship between intrinsic functional 

connectivity within and between specific networks in the brain, and their association with 

the increasingly self-organized eye-gaze dynamics observed in infants. Using densely 

sampled longitudinal data collected from the Baby Connectome Project (Howell et al., 

2019), the present study will leverage fc-MRI and eye-tracking data to meet two aims: 1) 

to model longitudinal growth in within-network functional connectivity, and 2) to 

examine how changes in the self-organization of infants’ eye gaze are supported by the 

development of specific functional brain networks.  

 

Methods 
 

Participant recruitment.  

All scans were collected from infants as part of the Baby Connectome Project (BCP), a 

Lifespan Connectome Project funded by the NIH. The primary objective of the BCP is to 

characterize brain and behavior development in the first 5 years of life. Children between 



 61 
0-60 months were eligible for enrollment if they 1) were born between 37-42 weeks of 

gestational age, 2) did not weigh less than 2,000g at birth 3) had no major pregnancy or 

delivery complications, and 4) had no contraindication for MRI.  

Data processing for the BCP data is on-going. As of March 2021, there were 349 

processed scans with resting state data from 169 individuals (mean age=18.26 months, 

age-range=8-60 months). Data from infants younger than 9 months (n=18 scans) were 

excluded as the grey and white matter segmentation must be done by hand for this age 

group, and segmentation is on-going. 21 scans were excluded for having fewer than 600 

frames, and 39 were excluded for not passing quality control. Finally, 54 scans were 

removed from the present analyses because they had to be re-processed due to an error. 

The final sample of available resting state data was 217 scans from 131 individuals 

(Figure 23).  

  Given that a significant number of scans will be added to this sample within the 

next few months, and that these scans will bolster the number of infants with at least 

three usable time points (one of the primary goals of the BCP), we expect the results to 

change substantially once we add these scans to the sample. Code is already written for 

these analyses (github.com/rrobinn/RS-Functional-Connectivity-Models/), so that 

analyses can be done immediately once the data are ready (this repo is private, please 

https://github.com/rrobinn/RS-Functional-Connectivity-Models/
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email me for access). For the present dissertation, I will present the predictions and 

analytic plan.  

 

Figure 23. Sample of available scans with resting state data.  

Each individual is colored by the cohort they belong to. BCP was designed as an accelerated longitudinal 

study where each cohort covers overlapping age ranges.  

 

Imaging 

Images were acquired on 3T Siemens Prisma MRI scanners using a Siemens 32 channel 

head coil at the University of Minnesota Center for Magnetic Resonance Research. The 

imaging protocol closely followed that of the Human Connectome Project (Van Essen, 

Smith, Barch, Behrens, Yacoub, & Ugurbil, 2013). 

For field maps and rsfMRI, data were collected in posterior-anterior (PA) and 

anterior-posterior (AP) direction pairs. Data were acquired in the following order: T1-

weighted (MPRAGE), T2-weighted (T2wSPC), spin-echo field maps, rsfMRI, DTI, then 

field maps and rsfMRI repeated identically and a second set of DTI scans. If data were 

not of high enough quality (rsfMRI motion monitored with FIRMM; Dosenbach, et al., 

2017), reacquisition was attempted. If the child was unable to continue sleeping, the 
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second set was not always collected. Consequently, 114 scans had only one pair of 

rsfMRI data (11:34 minutes of data); while 103 had at least part of the second set 

collected (up to 23:08 minutes of data). 

Images were collected with the following parameters. T1w: matrix size 320x320, 

FOV 256x256 mm, 0.8 mm isotropic, flip angle = 8°, TE = 2.24 ms, TR = 2400/1060 ms. 

T2w: matrix size 320x320, FOV 256x256 mm, 0.8 mm isotropic, variable flip angle, TE 

= 564 ms, TR = 3200 ms. Field maps (PA/AP): matrix size 104x91, FOV 208x208 mm, 2 

mm isotropic, flip angle = 90°, TE = 66 ms, TR = 8000 ms. rsfMRI (PA/AP): matrix size 

104x91, FOV 208x208 mm, 2 mm isotropic, flip angle = 52°, TE = 37 ms, TR = 800 ms, 

time = 5:47.  

 

Preprocessing 

Data were organized using the Brain Imaging Data Structure (BIDS, Gorgolewski et al., 

2013) and processed using the publicly available Developmental Cognition and 

Neuroimaging (DCAN) lab fMRI Pipeline (Fair et al., 2020). This BIDS application 

initiates a functional MRI processing pipeline built upon the Human Connectome 

Project's minimal processing pipelines (Glassera et al., 2013). The pipeline comprises six 

main stages: 1) PreFreesurfer, 2) FreeSurfer, 3) PostFreesurfer, 4) Volume, 5) Surface, 

and 6) DCAN BOLD processing, which is described in depth in Fair et al. (2018). A brief 

description of the pipeline follows. PreFreesurfer aligns anatomical data (both T1 and T2) 

to the AC-PC axis and then non-linearly normalizes them to an age-specific atlas, and 

creates segmentations using joint label fusion (Wang, et al., 2013). FreeSurfer aligns T1 

to an atlas using boundary-based registration (Greve & Fischl, 2009) and produces and 
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refines native cortical surfaces (Fischl, 2012), using intensity adjustments on each ROI 

separately. PostFreeSurfer converts the FreeSurfer outputs to CIFTI space. The Volume 

and Surface steps preprocess and align BOLD data to CIFTI space. The average volume 

was calculated from rigid-body alignment and registered to the T1. BOLD data were then 

projected onto the surface representation of the cortical ribbon, and down-sampled to the 

standard surface space and smoothed using a 2mm full-width-half-max Gaussian filter. 

Finally, the DCAN BOLD connectivity processing stream (Miranda-Dominguez et al., 

2020) reduces spurious variance, by regressing averaged grey matter signal, and white 

matter and ventricular regions. Data were filtered using a bandstop filter of (16.8896, 

28.6662) Hz across all participants. Framewise displacement and other movement metrics 

are calculated, but poor frames are treated later in analysis.  

 

Definition of ROIs and Functional Connectivity Computation  

ROIs (n=230) were adopted from previous work examining functional connectivity in 

infants (Pruett et al., 2015), and projected to a surface representation for cortical ROIs, 

using 10 mm-diameter spherical representations in volume space. They were a subset of 

cortical functional areal parcellations obtained in healthy adults (Power et al., 2011) that 

were found to be stable in gray-matter coverage at different stages in infancy (for more 

information see Eggebrecht et al., 2017). ROI time series were calculated as the mean 

across all vertices in the surface representation or across all included voxels in the 

subcortical ROIs. Pairwise Pearson correlation values were generated for each of the 

26,335 possible pairs of ROIs and then Fisher-z transformed. 



 65 
 ROIs were then assigned to functional brain networks based on a network model 

derived using the Infomap algorithm (Rosvall & Bergstrom, 2008) on RS data collected 

from a different sample of infants (Eggebrecht et al., 2017). Broadly, a correlation matrix 

averaged across the sample was binarized at different correlation thresholds (ranging 

from 1% to 10% of all possible connections surviving the threshold) to create matrices 

with different levels of sparseness. The Infomap algorithm then assigned ROIs to 

subnetworks at each correlation matrix based on the maximization of within-module 

random walks. Solutions across all the thresholds were combined using an “algorithmic 

consensus” procedure. Subnetworks with ≤ 5 ROIs were designed as “Unassigned.” This 

model summarizes the functional connectivity in the infant-toddler brain into 13 putative 

networks (naming informed by adult set of networks): Vis (visual), tDMN (temporal 

default mode network), pcDMN (posterior cingulate DMN), aDMN (anterior DMN), 

SMN (somato-motor network), SMN2 (somato-motor network 2), DAN (dorsal attention 

network), pFPC (posterior frontal parietal control network), aFPC (anterior frontal 

parietal control network), SubCtx (subcortex), CO (cingulo-opercular), pCO (posterior 

CO), and Sal (salience).  

 A benefit of using a network solution generated with an independent sample is 

that is prevents overfitting. To ensure that this model fit the data from the current sample, 

a modularity score (Newman, 2004) was calculated. This score provides a summary of 

community structure, or the extent to which ROI-ROI connections within a network are 

dense while ROI-ROI connections between networks are sparse. Newman’s Qn 

calculated at 2.5% edge density was 0.62 in the present sample, indicating that this 
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network solution had adequate fit for the current sample (for comparison, past work that 

calculated Newman’s Qn in adult resting state networks reported modularity values 

ranging from roughly 0.5-0.7 (Gordon et al., 2017).  

 Within-network functional connectivity was calculated by taking the average FC 

values from all ROIs in the network. Between-network functional connectivity was 

calculated by taking the average pair-wise correlations between the ROIs in each 

network. Distributions of the mean within-network functional connectivity values can be 

seen in Figure 24, and the Infomap-sorted mean functional connectivity MRI matrix 

derived from the 230 ROIs can be seen in Figure 25. 

 

 
Figure 24. Z-score distributions of participants’ within-network connectivity values for each network.  
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Figure 25. Info-map sorted functional connectivity matrix.  

 
Networks of interest 

 
The present study used pre-defined network assignments, as described in the previous 

section. One challenge in generating hypotheses about specific networks is that there are 

inconsistencies in how networks are defined (Uddin, Thomas Yeo, & Spreng, 2019). In 

the present study, the salience (SAL) and cingulo-opercular (CO) networks contain ROIs 

associated with the ventral stream (e.g., IFG, superior temporal sulcus inferior parietal 

lobule, see Table 6). Given that only 5 ROIs were assigned to the SAL network (all in 

regions with the Talairach label IFG), mean connectivity across the SAL and CO 

networks will be calculated and used for analyses as “ventral attention areas.” All ROIs 

from the DMN sub-networks (aDMN, pcDMN, tDMN) were used for calculating within-

network FC in the DMN, and DMN-DAN between-network connectivity.  
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Network 

Sub-

networks 

Talairach Label 

Number of 

included 

ROIs 

Cingulo-opercular 

CO 

Cerebellum, insula, auditory cortex, superior 

temporal sulcus, postcentral gyrus, precentral 

gyrus. 

16 

Posterior 

CO 

Auditory cortex, inferior parietal lobule, insula, 

postcentral gyrus.  Posterior cingulate, superior 

temporal gyrus.  

7 

Salience  IFG 5 

Dorsal Attention 

Network 
 

Cerebellum, Fusiform, vWFA, inferior 

occipital gyrus, inferior parietal, inferior 

temporal gyrus, lateral occipital gyrus, middle 

occipital gyrus, middle temporal gyrus, 

occipital cortex, superior parietal 

40 

Default Mode 

Network 

Anterior 

DMN 

cingulate, IFG, insula, medial frontal gyrus, 

mFC, middle frontal gyrus, superior frontal 

cortex 

22 

Posterior 

cingulate 

DMN 

angular gyrus, fusiform gyrus, lateral 

occipital/parietal cortex, middle occipital 

gyrus, middle temporal gyrus, 

parahippocampal gyrus, posterior cingulate, 

precuneus 

18 

Temporal 

DMN 

inferior temp gyrus, middle temporal gyrus, 

superior temporal gyrus, posterior cingulate, 

SMG/inferior parietal, inferior parietal 

22 

Frontoparietal 

Control Network 

aFPC 

Inferior frontal gyrus, medial frontal gyrus, 

orbital gyrus, precentral gyrus, superior frontal 

cortex, 

21 

pFPC 

angular gyrus, inferior parietal, inferior 

temporal gyrus, lateral occipital cortex, middle 

temp gyrus, precuneus 

12 

Table 6. Each network of interest, and the Talairach labels of the ROIs assigned to those networks.  

Aim 1: Model growth in within-network functional connectivity  

Analytic plan  
 
 Within-network connectivity was calculated for each infant at each time point by 

averaging across the FC values of each ROI assigned to a given network. Given the 

accelerated longitudinal design, fixed-effects (e.g. group-level effects) of growth were 

modelled based on data from cohorts with overlapping age-spans. Random effects of 

intercept (e.g. individual differences in mean FC values were also estimated. To 

distinguish between-person effects of age from within-person effects of age, two age 
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variables were tested in the model: between-person age (age at time of scan, centered on 

the grand mean) and within-person age (between-person age, centered on the individual’s 

average age across their visits). Subject-level covariates included scanner and sex. Visit-

level covariates included motion (remaining mean-wise frame displacement), and the 

number of attempted resting state runs.  

  

Predictions 
 
 Past work has shown positive linear growth in most resting state networks, 

with the exception of the sensorimotor network which shows declining connectivity 

over the first two years of life (Gao, Alcauter, Elton, et al., 2015; Gao, Alcauter, Smith, 

et al., 2015). This work has highlighted more early rapid growth in lower-level 

networks (e.g. visual networks) than higher-order networks (e.g. DMN, FPC, etc.). I 

anticipate that the BCP data will replicate these findings in the data covering the 

first two years of life. Furthermore, it is likely that we will see non-linear growth, 

such that growth levels off between 2-5 years of age.  

 

Aim 2: Examine relationship between system dynamics of visual attention 

and resting state network development  
 

Analytic plan 
 

Summarizing eye-tracking measures within a visit  

 

As described in Study 1, α and MF spectrum width are calculated for each time series. 

Each visit contains three conditions (Social, Pixelated, Attention cue), all of which are 

comprised of multiple time series. For the hypotheses about DAN-DMN connectivity, I 
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generated a visit-level summary score for eye-gaze, by taking the average α and tallying 

the t-statistic counts (non-significant monofractal, multifractal positive, multifractal 

negative) across the entire visit (yielding 4 measures per visit). For the hypotheses about 

Sal/CO-FPC connectivity which were specific to stimulus Conditions, I generated these 

same summary metrics separately for the Social and Pixelated trials (yielding 8 measures 

per visit). The available sample with concurrent MRI and eye-tracking data can be seen 

in Figure 26, and more data will be added this summer.  

 
Figure 26. Longitudinal data included in sample. 

Top figure shows number of MRI visits with resting state, colored by whether there is concurrent eye-

tracking data. Bottom figure shows number of MRI visits with both resting state and eye-tracking data. 

Both figures reflects counts as of March 2021. 
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Modeling relationship between DAN-DMN connectivity and eye-gaze fractality  

First, I will model the longitudinal trajectory of DAN-DMN connectivity to verify that 

these become more negatively correlated over developmental time in the current sample. 

Then I will use the mean between-network connectivity scores at each visit as the 

independent variable, and the tallies of each kind of t-statistic as the dependent variable. 

Visit-level quality control covariates for eye-tracking (e.g. calibration precision, 

proportion interpolated) and MRI (e.g. number of resting state runs, remaining mean 

frame displacement) will be included. To test the specificity of this relationship, in 

addition to using DAN-DMN connectivity (predictor of interest), I will also model the 

relationship between eye-gaze fractality and somatomotor-DMN connectivity as I do not 

predict that there should be significant relationship between these two variables. The 

predicted results are plotted in Figure 27. Controlling for age, DAN-DMN connectivity – 

but not SMN-DMN connectivity – will be negatively correlated with the number of 

positive t-statistics in the concurrent eye-tracking. In other words, more negative 

connectivity between the DAN and DMN networks will predict more nonlinear 

interactivity that constrains eye-tracking variability. If I find this result, this would 

suggest that the relationship between DAN-DMN connectivity and behavior observed in 

adults (Clare Kelly et al., 2008) emerges in infancy as infants become more “adult like” 

in their functional brain network organization. If I do not find this result, then it is 

possible that either this brain-behavior relationship does not emerge until later in life, or 

that there is a lack of within-person stability in these measures that makes it challenging 

to correlate RS data with behavioral outcomes in infancy.  
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Modeling relationship between ventral frontoparietal network and eye-gaze fractality 

I will use the same approach as above, except the predictor of interest will be mean 

connectivity between the FPC and Salience/CO networks. Additionally, I will include an 

interaction term between FC and Stimulus Condition (Social, Pixelated), to test my 

prediction that the association between FC and eye-gaze will be stronger for data 

collected in the Social condition.  

 If I find this Condition-specific effect, this would bolster current theories that 

visual information from the ventral stream of attention catalyzes the development of 

frontal areas, serving as one mechanism for experience-dependent individual differences 

in visual attention  (Rosen et al., 2019). If there is a relationship between FC and eye-

gaze that is not condition specific (e.g. a main effect of FPC-SAL/CO connectivity, but 

no significant interaction with Condition), then this would suggest that the ventral 

frontoparietal network may support more domain general attention development.  
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Figure 27. Predicted model results for Aim 2.  

Top: More negative DAN-DMN connectivity will be associated with more time series with positive t-

statistics, reflecting nonlinear interactivity that constraints system variability. Bottom: Increased positive 

FPC-SAL/CO connectivity will be associated with more time series with positive t-statistics, particularly in 

the Social condition.  
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Summary & Conclusions 
 

This research takes a systems-level approach, applying methods from Complexity 

Science to understand how infant attention becomes increasingly self-organized in the 

first years of life. Results provided evidence of self-organization in infants’ eye-gaze 

dynamics as they free-viewed movies, which increased in the first years of life. Findings 

also suggest that the social content available to the infant via the movies themselves, as 

well as via infants’ spontaneous fixations on areas of the screen with more salient social 

information, elicited more self-organized eye-gaze dynamics. Results also provided 

evidence for a more complex form of cross-scale interactivity, as measured by multi-

fractal spectrum width. Developmentally, infants’ eye-gaze dynamics were more likely to 

display evidence of cross-scale interactivity that constrains variability in system 

dynamics as they got older, and when they were presented with social content. In other 

words, interactions across time scales in infants’ attention systems appear to hone 

attention dynamics, rather than increase randomness. Future work should investigate the 

relationship between these different categories of multi-fractal systems and metrics like 

entropy to strengthen this inference. 

The next avenue for this research is to examine how brain development supports 

the coordination of these processes that are critical for visual exploration in infancy (as 

described in Study 2). An important component of this work will be to first establish 

whether there is a trait-like complexity “signature” that distinguishes individuals, given 

the context-dependent nature of these metrics. Overall, intercept-only mixed-effect 
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models indicated that 23% of variability in α was at the visit-level, and 11.6% was at the 

infant-level (collapsed across all of their visits). Identifying the optimal way to quantify a 

trait-like “fractal thumbprint” will be critical in order to establish reliable patterns 

between eye-gaze dynamics and functional brain development.  
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